Research and Innovation

Sorbonne University promotes excellence at the core of each of its disciplines and develops numerous interdisciplinary programs capable of meeting the major challenges of the 21st century.

Recherche et Innovation

Education

Discover our entire academic offer

In Arts, Languages, Letters, Human and Social Sciences / Medicine and Health Professions / Science and Engineering

Choosing Sorbonne University means joining a world-renowned multidisciplinary institution, giving the best of oneself to follow a high-level education and join a community of more than 55,000 students and 360,000 alumni worldwide.
 

Study at
Sorbonne University

Participate in the great adventure of learning, succeed in high-level studies and prepare to create the future.

Parismus is the international student association of Sorbonne University

Parismus

Parismus is the international student association of Sorbonne University.

Supporting International Students & Scholars

Sorbonne University supports its international members with a variety of services.

Nous sommes à vos côtés

Bringing together 10 institutions covering offering studies in literature, medicine, science and engineering, technology and management. This diversity fosters a global approach to teaching and research, to jointly promote access to knowledge for all.

Alliance 4EU+

The 4EU+ Alliance

In a changing world, Sorbonne University has joined forces with the universities of Charles in Prague, Heidelberg, Warsaw, Milan and Copenhagen, to create the 4EU+ Alliance.

With an innovative model of European university, six large research-intensive universities work together respond to the educational and research challenges facing Europe.

Les Alliances de Sorbonne Université


Publications

All publications

Parlez-vous (les) français ?

Par Mathieu Avanzi

Atlas des expressions de nos régions

Galilée à la plage

Par Arnaud Cassan

L'astronomie dans un transat

Follow us on

les réseaux sociaux

ican
  • Médecine

Research Unit on Cardiovascular Diseases, Metabolism and Nutrition

MRSU 1166

  • Équipe d'accueil

The UMR 1166, created in 2014, brings under the same umbrella five teams dedicated to the research on cardiovascular and metabolic diseases, with internationally recognized and complementary expertise in genomics, biostatistics, molecular and cell biology, physiology and pharmacology.

The unit has played a major role in the creation of the IHU-ICAN (Institut Hospitalo-Universitaire-Institute of Cardiovascular and Nutrition Diseases), one of the six IHU created in France. The IHU-ICAN has provided unique core facilities for clinical research and human bio-resources in the field of cardiovascular and nutrition diseases. We are also member of the Fédération des Recherches Interdisciplinaires Pitié-Salpêtrière (FRIPS). FRIPS brings together four research units, 400 researchers and staff, located in the same building and who mutualize core facilities, lab spaces and foster a multidisciplinary scientific life.

Our scientific project is organized around four main axes: atherothrombosis and coronary diseases, genomics of cardiomyopathies and heart failure, atrial fibrillation and cardiac arrhythmias, lipids and atherosclerotic vascular diseases.

Our two major goals are:

  • the identification of new individual pathological phenotypes with shared pathways that will be targeted for intervention integrating the multifactorial and multi-organ nature of these disorders;
  • the identification of the earliest molecular and cellular stages, which would allow early prevention to delay the occurrence of the disease or of its complications.

Cardiomyopathies and Channelopathies, which constitute the two major subgroups of Hereditary cardiac diseases, are the leading causes of sudden cardiac death and heart failure in young patients (<40 years) especially in athletes. For more than 15 years our group has been involved in deciphering the genetic and cellular mechanisms underlying the development of cardiomyopathies and channelopathies. We have recently identified new rare or frequent genetic variants involved in these diseases through genome wide association or sequencing strategies. Underlying signaling pathways are studied and new therapeutic approaches are starting based on the new knowledge. Meantime, translational approaches including genetic testing and high throughput resequencing have been developed in clinical practice in order to improve medical management of patients and their families through personalized medicine.

Our main goal is to improve knowledge in cardiovascular medicine from treatment strategies to education for primary prevention. Our cardiovascular research is broad going from in vitro experimental models to randomized clinical trials. It has always been focused on the same objectives, but projects have been diversified. Our group is made of practicing MDs who have interrupted their clinical career to be trained in clinical or basic medical science abroad. Expanding of the group led to new areas of investigation including now cardiovascular epidemiology, education but also new technologies. Our main areas of expertise are the following:

  • New models for experimental thrombosis ;
  • Demonstration of the prognostic role of biomarkers ;
  • Comparative evaluation of antithrombotic thérapies ;
  • Reassessment of antithrombotic drug regimens ;
  • PK and PD models for drug evaluation ;
  • Phase 1 study for oral antithrombotic treatment ;
  • Use of metanalysis techniques ;
  • Clinical and biological registries in atherothrombosis ;
  • Core laboratory for angiography and biology ;
  • Student tuition (Masters and PhD)(n=20) ;
  • Randomized trials (action-coeur.org).

We aim at understanding the drivers of the molecular and cellular plasticity that characterizes cardiovascular remodeling during atrial fibrillation, heart failure, senescence and pulmonary hypertension.

Our projects focus on:

  • the plasticity of cardiovascular tissues cellular composition. We notably study the capacity of progenitor and stem cells to be recruited, to differentiate in various mesenchymal cell lineages and to contribute to atrial and vascular remodeling;
  • the plasticity of macromolecular protein complexes regulating cardiac function and their role in pump dysfunction and arrhythmias. We focus on the regulation of ion channels trafficking and targeting in cardiomyocytes;
  • the role of cellular metabolic shifts in regulating myocardial remodeling and atrial electrical properties;
  • the role of immune and inflammatory cells during cardiovascular remodeling leading to heart failure. We study the mechanisms of macrophages protective role during early adaptive cardiac hypertrophy;
  • the role of oxidative stress and inflammation during age-associated cardiovascular remodeling and transition to heart failure;
  • the role of the GCN2 gene mutation in the development of Pulmonary Veno-Occlusive Disease, a specific form of pulmonary hypertension.

Cardiovascular diseases (CVD) still remain the major cause of mortality worldwide due to the growing prevalence of obesity and associated metabolic disorders, including insulin resistance and Type 2 diabetes. Dyslipidemia characterized by altered circulating concentrations of lipoproteins and lipids is a major component in the development of CVD. Mechanisms through which lipids contribute to the development of metabolic disorders are multiple and involve complex signalling and regulation pathways at the both cellular and systemic levels. Deciphering of dysfunctional lipid metabolic pathways may therefore help to identify new therapeutic targets to prevent or hamper the occurrence and development of CVD. In this context, our research team aims to propose new candidate pathways, genes and biomarkers in CVD.

The research team is focused on the study of mononuclear phagocytes in the context of cardiometabolic diseases. The team main objective is to better understand how different mononuclear phagocytes subsets impact on chronic metabolic disorders, with particular emphasis on macrophages and dendritic cells. To this aim, unique mouse models and pre-clinical approaches are used to decipher the complex interactions between mononuclear phagocytes subsets and metabolic tissues. In addition, this team builds on recent findings evidencing an interplay between phagocytes, the intestinal microbiota and lipid as well as carbohydrate metabolisms in the host.

Director

  • Stéphane HATEM

General secretary

Communication

Autres tutelles

  • Institut National de la Santé et de la Recherche Médicale | INSERM
  • Sorbonne Université

Coordonnées

Adresse physique

Faculté de Médecine Sorbonne Université 91 boulevard de l’Hôpital
75013 Paris

Adresse postale

Faculté de Médecine Sorbonne Université 91 boulevard de l’Hôpital
75013 Paris

Ça se passe à la faculté des Sciences et Ingénierie

Tout voir

Formations

Sciences et Ingénierie

7 Formations

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, 

Étudier à
La Faculté de Sciences

La diversité des étudiants et de leurs parcours est l’une de nos richesses. Sorbonne Université s’engage pour la réussite de chacun de ses étudiants et leur propose une large offre de formations ainsi qu’un accompagnement adapté à leur profil et à leur projet.

La diversité des étudiants et de leurs parcours est l’une de nos richesses. Sorbonne Université s’engage pour la réussite de chacun de ses étudiants et

Vie associative

La diversité des étudiants et de leurs parcours est l’une de nos richesses. Sorbonne Université s’engage pour la réussite de chacun de ses étudiants et leur propose une large offre de formations ainsi qu’un accompagnement adapté à leur profil et à leur projet.

Recherche & innovation

La diversité des étudiants et de leurs parcours est l’une de nos richesses. Sorbonne Université s’engage pour la réussite de chacun de ses étudiants et leur propose une large offre de formations ainsi qu’un accompagnement adapté à leur profil et à leur projet.

55 600

Étudiants

4 500

Doctorants

137

Structures de recherche

126

ERC*

*ERC : Conseil Européen de la Recherche